Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 211(8): 1203-1215, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37638825

RESUMO

The induction of CTL responses by vaccines is important to combat infectious diseases and cancer. Biodegradable poly(lactic-co-glycolic acid) (PLGA) microspheres and synthetic long peptides are efficiently internalized by professional APCs and prime CTL responses after cross-presentation of Ags on MHC class I molecules. Specifically, they mainly use the cytosolic pathway of cross-presentation that requires endosomal escape, proteasomal processing, and subsequent MHC class I loading of Ags in the endoplasmic reticulum (ER) and/or the endosome. The vesicle SNARE protein Sec22b has been described as important for this pathway by mediating vesical trafficking for the delivery of ER-derived proteins to the endosome. As this function has also been challenged, we investigated the role of Sec22b in cross-presentation of the PLGA microsphere-encapsulated model Ag OVA and a related synthetic long peptide. Using CRISPR/Cas9-mediated genome editing, we generated Sec22b knockouts in two murine C57BL/6-derived APC lines and found no evidence for an essential role of Sec22b. Although pending experimental evidence, the target SNARE protein syntaxin 4 (Stx4) has been suggested to promote cross-presentation by interacting with Sec22b for the fusion of ER-derived vesicles with the endosome. In the current study, we show that, similar to Sec22b, Stx4 knockout in murine APCs had very limited effects on cross-presentation under the conditions tested. This study contributes to characterizing cross-presentation of two promising Ag delivery systems and adds to the discussion about the role of Sec22b/Stx4 in related pathways. Our data point toward SNARE protein redundancy in the cytosolic pathway of cross-presentation.


Assuntos
Antígenos , Apresentação Cruzada , Proteínas Qa-SNARE , Proteínas R-SNARE , Animais , Camundongos , Apresentação de Antígeno , Antígenos/metabolismo , Células Dendríticas , Endossomos/metabolismo , Microesferas , Peptídeos/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/metabolismo
2.
Sci Immunol ; 8(83): eabn6173, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37205768

RESUMO

Despite the clinical success of immune checkpoint blockade (ICB), in certain cancer types, most patients with cancer do not respond well. Furthermore, in patients for whom ICB is initially successful, this is often short-lived because of the development of resistance to ICB. The mechanisms underlying primary or secondary ICB resistance are incompletely understood. Here, we identified preferential activation and enhanced suppressive capacity of regulatory T cells (Treg cells) in αPD-L1 therapy-resistant solid tumor-bearing mice. Treg cell depletion reversed resistance to αPD-L1 with concomitant expansion of effector T cells. Moreover, we found that tumor-infiltrating Treg cells in human patients with skin cancer, and in patients with non-small cell lung cancer, up-regulated a suppressive transcriptional gene program after ICB treatment, which correlated with lack of treatment response. αPD-1/PD-L1-induced PD-1+ Treg cell activation was also seen in peripheral blood of patients with lung cancer and mesothelioma, especially in nonresponders. Together, these data reveal that treatment with αPD-1 and αPD-L1 unleashes the immunosuppressive role of Treg cells, resulting in therapy resistance, suggesting that Treg cell targeting is an important adjunct strategy to enhance therapeutic efficacy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Neoplasias Cutâneas , Humanos , Camundongos , Animais , Linfócitos T Reguladores , Antígeno B7-H1 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico
3.
Cancers (Basel) ; 14(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36358718

RESUMO

BACKGROUND: Patients with locally advanced pancreatic cancer (LAPC) are treated with chemotherapy. In selected cases, stereotactic body radiotherapy (SBRT) can be added to the regimen. We hypothesized that adding an adjuvant containing a heat-killed mycobacterium (IMM-101) to SBRT may lead to beneficial immuno-modulatory effects, thereby improving survival. This study aims to investigate the safety of adding IMM-101 to SBRT and to investigate the immuno-modulatory effects of the combination treatment in the peripheral blood of LAPC patients. METHODS: LAPC patients were treated with SBRT (40 Gy) and six intradermal vaccinations of one milligram IMM-101. The primary endpoint was an observed toxicity rate of grade 4 or higher. Targeted gene-expression profiling and multicolor flow cytometry were performed for longitudinal immune-monitoring of the peripheral blood. RESULTS: Twenty patients received study treatment. No treatment-related adverse events of grade 4 or higher occurred. SBRT/IMM-101 treatment induced a transient decrease in different lymphocyte subsets and an increase in CD14+CD16-CD11b+HLA-DRlow myeloid-derived suppressor cells. Importantly, treatment significantly increased activated ICOS+, HLA-DR+ and Ki67+PD1+ T and NK cell frequencies. This was not accompanied by increased levels of most inhibitory markers, such as TIM-3 and LAG-3. CONCLUSIONS: Combination therapy with SBRT and a heat-killed mycobacterium vaccine was safe and had an immune-stimulatory effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...